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Adenosine and functional A1 adenosine receptor (A1AR) availability
are supposed to mediate sleep–wake regulation and cognitive per-
formance. We hypothesized that cerebral A1AR availability after an
extendedwake period decreases to awell-rested state after recovery
sleep. [18F]CPFPX positron emission tomography was used to quan-
tify A1AR availability in 15 healthy male adults after 52 h of sleep
deprivation and following 14 h of recovery sleep. Data were addi-
tionally compared with A1AR values after 8 h of baseline sleep from
an earlier dataset. Polysomnography, cognitive performance, and
sleepiness were monitored. Recovery from sleep deprivation was
associated with a decrease in A1AR availability in several brain re-
gions, ranging from 11% (insula) to 14% (striatum). A1AR availabil-
ities after recovery did not differ from baseline sleep in the control
group. The degree of performance impairment, sleepiness, and ho-
meostatic sleep-pressure response to sleep deprivation correlated
negatively with the decrease in A1AR availability. Sleep deprivation
resulted in a higher A1AR availability in the human brain. The in-
crease that was observed after 52 h of wakefulness was restored
to control levels during a 14-h recovery sleep episode. Individuals
with a large increase in A1AR availability were more resilient to
sleep-loss effects than those with a subtle increase. This pattern
implies that differences in endogenous adenosine and A1AR avail-
ability might be causal for individual responses to sleep loss.
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Sleep loss is known to impair almost every aspect of cognition,
such as learning (1), long-term memory consolidation (2), at-

tention and psychomotor vigilance (PVT) (3), and executive func-
tions (4), including decision making (5) and emotional control (6).
Sleep deprivation further typically alters the frequency distribution
of the waking electroencephalogram (EEG) as an indicator of
alertness corresponding to cognitive performance (7). However,
large interindividual differences exist in the degree of cognitive
performance decline during sleep deprivation (3). In a trait-like
process, some individuals keep high-level performance during sus-
tained wakefulness, whereas others suffer from severe performance
loss (3). The neuro-molecular mechanisms in the brain responsible
for these different vulnerabilities are still largely unknown. Caf-
feine, commonly consumed for fighting fatigue, promotes wake-
fulness via adenosine receptor antagonism. It seems likely that the
adenosinergic system is a neurochemical link between performance
and sleep (8). Adenosine is contributing to the homeostatic process
of sleep–wake regulation (for review, see refs. 9–12). As has been
shown in cats and rats, extracellular adenosine concentration fluc-
tuates rhythmically in many brain regions, such as the basal fore-
brain, increasing during wakefulness and decreasing during sleep: it
thereby induces sleep after wake extension and is in turn restored
to baseline levels after recovery sleep (13). For additional in-
formation on adenosine, see SI Text.

According to the two-process model of sleep–wake regulation
(14), homeostatic sleep pressure increases with time awake
according to a saturating exponential function, and declines ex-
ponentially during sleep. It has been proposed that the develop-
ment of depressive symptoms is associated with a dysfunction in
this homeostatic sleep drive (15). Recently a synaptic plasticity
model of therapeutic sleep deprivation in major depression has
been proposed (16). The model integrates the synaptic plasticity
hypothesis of depression (17) and the synaptic homeostasis hy-
pothesis (18). According to this model, therapeutic sleep depriva-
tion strengthens synapses, thereby shifting the deficient long-term
potentiation in patients with major depressive disorder in a more
favorable range of associative plasticity. Sleep deprivation and
sleep restriction are effective but short-lasting treatments (19) in
depression. In contrast, healthy individuals show negative effects
concerning mood, alertness, and cognition. Adenosine-related in-
teractions are also crucial in astrocyte–neuron communication,
which underlies both cortical sleep (20) and also antidepressive
effects of sleep deprivation (21). Apart from extracellular adeno-
sine itself, evidence exists for the mediating subtype of adenosine
receptors to regulate sleep–wake rhythmicity. In the central ner-
vous system, the A1 subtype shows the widest distribution among
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adenosine receptors, with particularly high densities in various
areas of the cortex, striatum, and thalamus (22). The neurophysi-
ological and behavioral effects of sleep deprivation in cats were
mimicked by increasing the adenosine concentration experimen-
tally (13, 23). Several studies in cats and rodents revealed that
activation of the A1 adenosine receptor (A1AR) by an agonist and
blockage by an antagonist up- and down-regulated sleep propensity
(24, 25). Moreover, A1AR mRNA was shown to increase in the
basal forebrain under sleep restriction (11). Inhibiting the A1AR
mRNA translation in rats decreased nonrapid eye-movement sleep
and increased wakefulness (26). An up-regulation of A1AR density
in the human and in the rat brain in response to acute sleep loss
(10, 27, 28) has been shown. Neither adenosine nor adenosine
receptors can easily be studied in vivo in the human brain. How-
ever, positron emission tomography (PET) is a tool that allows for
exploring adenosine receptors in vivo. In earlier experiments, we
already found evidence that A1AR availability is stable after re-
peated 8-h sleep episodes (29) and increased after 24 h of sleep
deprivation (27). In the present study, we intended to increase
sleep pressure even further to examine if A1AR availability is sa-
tiating, as predicted by the two-process model, and whether the
exponential discharge of sleep pressure during recovery sleep is
reflected in A1AR availability.
The aims of this study were therefore to determine in healthy

volunteers: (i) to what extent 14 h of recovery sleep reduces cerebral
A1AR availability as measured following 52 h of sleep deprivation
(primary outcome parameter); (ii) if such recovery sleep restores
A1AR availability to the rested levels found in an independent
control group after an 8-h sleep episode without preceding sleep
deprivation; and (iii) if impairment of cognitive performance under
sleep deprivation compared with following recovery sleep is corre-
lated with a higher cerebral A1AR availability (exploratory analyses).
A1AR availability was measured in 14 participants using PET after
52 h (SD52) of sustained wakefulness, followed by 14 h of recovery
sleep (REC14), and compared with A1AR availability after an 8-h
sleep episode in a control group of 20 participants.
For reasons of radiation protection, it was not possible to in-

vestigate each participant more than twice. Instead of measuring
baseline A1AR availability after an 8-h sleep episode, we per-
formed a scan after sleep deprivation and after recovery sleep. As
shown previously, there is a high test–retest reliability of A1AR
availability after an 8-h sleep episode (29), which is also compa-
rable between groups of the same age (30). Receptor binding data
of earlier experiments after 8 h of sleep at night (27, 29) were
therefore integrated into the present analyses as independent
control group values (Table 1).

Results
Group Characteristics.Table S1 provides an overview of participants’
demographic data and scanning parameters. Both groups were not
significantly different in these aspects.

Imaging Quantification. Regionalized A1AR availability values and
statistics are presented in Table 1. Under sleep deprivation, the time
spent awake before the scans was 52:26 h:min ± 1:45 h:min. A1AR
availability was significantly higher after 52 h of sleep deprivation in
all examined brain regions compared with the scan after recovery
sleep and in some regions compared with the control group. A1AR
availability did not differ between recovery and the control group.
Fig. 1 displays the average parametric images of A1AR availability
for both conditions. A higher cortical binding after sleep deprivation
in comparison with recovery sleep is apparent in various regions.
The average regional decrease of A1AR availability after recovery
from sleep deprivation (i.e., SD52 − REC14) ranged from 14%
(striatum) to 10% (temporal cortex). Fig. 2 shows the distribution of
the relative difference between both days [(SD52 – REC14)/SD52]
of the examined regions of interest (ROI).

Cognitive Performance, Sleep, and Sleepiness. Mixed linear re-
gression showed that performance in PVT and N-back declined,
and sleepiness increased significantly with time awake [PVT: re-
sponse speed and lapses P < 0.0001, N-back: correct response (sum
1-, 2-, and 3-back) P < 0.0001, Karolinska sleepiness scale (KSS)
P < 0.0001]. The 14-h recovery sleep period restored performance
and sleepiness (Table S2).
A1AR availability and cognitive performance in response to

sleep deprivation varied considerably among individuals. In con-
trast to our third hypothesis, Fig. 3 illustrates that across individuals
larger decreases in A1AR availability (SD52 − REC14) were cor-
related with smaller decrements in PVT and N-back task perfor-
mance, as well as with less sleepiness (significant correlations for
other brain regions can be found in Table S3). Furthermore, A1AR
availability also correlated negatively with the percent time spent in
slow-wave sleep (i.e., stage N3) during the first sleep cycle of
recovery sleep.
Two subgroups were identified based on interindividual differ-

ences in A1AR decrease between 52 h of sleep deprivation and the
recovery condition. A PET–A1AR availability test–retest evalua-
tion study revealed that in the striatal region the average of the
absolute difference between scans was 0.1 mL/mL (29). This value
was used as cut-off criterion to divide subjects into two groups, one
group (n = 8) with a large difference (>0.1 mL/mL) in A1AR
availability between sleep deprivation and recovery, and one group

Table 1. Regional A1AR distribution volumes [VT (mL/mL)] in two groups after 8-h control sleep, 52 h of sleep
deprivation, and 14-h recovery sleep

Region

Receptor binding VT

ANOVA

Unpaired Unpaired Paired t test

CTR SD52 REC14 CTR vs. SD52 CTR vs. REC14 SD52 vs. REC14

Anterior cingulate cortex 0.77 ± 0.11 0.78 ± 0.11 0.69 ± 0.12 0.0094 0.7129 0.0490 0.0057
Insula 0.80 ± 0.11 0.86 ± 0.12 0.76 ± 0.13 0.0171 0.1484 0.3634 0.0083
Amygdala 0.75 ± 0.10 0.78 ± 0.11 0.67 ± 0.10 0.0162 0.3789 0.0397 0.0103
Frontal cortex 0.78 ± 0.13 0.91 ± 0.12 0.80 ± 0.11 0.0082 0.0101 0.5659 0.0063
Orbitofrontal cortex 0.73 ± 0.12 0.81 ± 0.12 0.71 ± 0.13 0.0031 0.0460 0.9001 0.0020
Occipital cortex 0.80 ± 0.14 0.92 ± 0.13 0.81 ± 0.13 0.0058 0.0144 0.6582 0.0042
Parietal cortex 0.77 ± 0.13 0.91 ± 0.13 0.80 ± 0.13 0.0061 0.0059 0.5323 0.0074
Temporal cortex 0.75 ± 0.12 0.85 ± 0.12 0.76 ± 0.12 0.0130 0.0272 0.7261 0.0089
Thalamus 0.78 ± 0.13 0.88 ± 0.14 0.75 ± 0.12 0.0025 0.0328 0.8381 0.0015
Striatum 0.79 ± 0.15 0.88 ± 0.13 0.75 ± 0.12 0.0050 0.0599 0.4405 0.0020

Values are given as mean ± SD; ANOVA P is the probability value of a mixed one-way ANOVA with subject as random; statistical
comparisons that exceed the multiple-comparison–adjusted threshold (FDR, Benjamini and Hochberg method, P < 0.022, n = 30 t tests)
are in boldface. Abbreviations: CTR, 8-h control sleep (n = 20); REC, 14-h recovery sleep; SD52, 52 h sleep deprivation (n = 14); VT, A1AR
distribution volume.
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(n = 6) with small difference (≤0.1 mL/mL). Individuals with large
differences in A1AR availability proved resilient to the effects of
sleep loss on performance, whereas individuals with minor differ-
ences in A1AR availability showed strong degradations in perfor-
mance (Figs. 3 and 4). Such group differences were not found
for sleepiness.
The comparison of the subjects with minor and predominant

A1AR decrease from SD52 to REC14 did not reveal any signifi-
cant difference in receptor binding at SD52 after correction for
multiple testing (Benjamini and Hochberg method, n = 10). On
the other hand, when comparing the changes within the subjects
with minor or predominant A1AR availability decrease, all brain
regions (except the orbitofrontal and temporal cortex) are signifi-
cantly different between SD52 and REC14 for the group that
showed predominant A1AR availability decreases (Benjamini and
Hochberg method, P < 0.02, n = 20 t tests) (Table S4).

Discussion
This study reveals that 14 h of recovery sleep after 52-h sleep
deprivation decreases elevated A1AR availability in the human
brain. This decrease in A1AR was predominant in the striatum and
thalamus, but also evident in other brain regions, including the
orbitofrontal cortex, amygdala, occipital cortex, frontal cortex, an-
terior cingulate cortex, and insula, parietal, and temporal cortex (in
descending order). In comparison with a well-rested independent
control group, we observed an increase in A1AR availability after

52-h sleep deprivation that was significant in the frontal, occipital,
and parietal cortices. Our human data confirm earlier autoradi-
ography experiments in rats that were kept under 48 h of sleep
deprivation (31). The authors of that study observed an up-
regulation in A1AR availability of up to 23% in the striatum and
13% in the cortex. Our own studies in rats that were sleep-deprived
for 12 or 24 h also showed an increase in A1AR availability in the
basal forebrain and in cortical areas (28). Nevertheless it should be
kept in mind that the impact of prolonged sleep deprivation
(∼50 h) cannot easily be compared between rats and humans, given
the sizable differences in the kinetics (i.e., time constants, triggers,
metabolic processes) of the homeostatic build-up and continuity of
sleep between the species. Moreover, there are large differences in
the procedure to apply sleep deprivation in humans and rats that
may impact the results as well. Common methods for sleep dep-
rivation in rodents impose varying levels of stimulation, physical
activity, or stress on the animals that is fundamentally different
from voluntary wakefulness in human subjects or patients.
Compared with a previous human study in which we investigated

A1AR availability after 28 h of sleep deprivation (27), there was no
significant additional increase in receptor availability in the present
study with 52 h of sleep deprivation, although the sample sizes might
have been too small to detect subtle differences. However, the results
appear to be consistent with the two-process model, which because of
the saturating kinetics of sleep pressure, only predicts a small addi-
tional increase between 28 and 52 h of wakefulness. A single night of
14-h recovery sleep was sufficient to restore A1AR availability to
levels that were observed in the well-rested control group, consistent
with the rapid exponential discharge of sleep pressure during sleep.
Taken together, the data support the assumption that the sleep–
wake-dependent fluctuations of homeostatic sleep pressure are
mediated, at least in part, by the amount of A1AR available.
Another key but counterintuitive finding of the present study

was that the decrease in A1AR availability was highly, but nega-
tively correlated with: (i) the degradation of cognitive performance
in the PVT and in the N-back task; (ii) the rise in subjective
sleepiness during prolonged wakefulness; as well as (iii) sleep
pressure reflected in the amount of N3 in the first sleep cycle of
recovery sleep. The brain regions in which we observed decreases
in receptor availability have previously been identified as highly
relevant for cognitive performance. In functional neuroimaging
studies, a widespread pattern of frontal and parietal cortical, as well
as thalamic, brain areas was found to be active during “good”
cognitive performance (i.e., in the absence of lapses of attention),
in contrast to lower activity in these areas during poor performance
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in a visual, selective attention task (not PVT) (32). In an in-
vestigation of the PVT, frontal and parietal activations were re-
quired to assure a good task performance after sleep deprivation
versus baseline (33). From cognitive performance under sleep-
deprivation conditions, it is known that the degree of impairment
varies highly among individuals (34). Differences in caffeine effects
have been linked to sleep-loss–induced performance impairments
(35) and to genetic variants of the adenosinergic system (36, 37).
Along these lines, we defined two subgroups based on the A1AR
availability decrease, of which one group showed a strong decline
in receptor availability, whereas the other revealed only a minor
decline. The group with predominant decreases in A1AR avail-
ability proved resilient to the effects of sleep deprivation on cog-
nitive performance. Participants with a minor A1AR availability
decrease, however, were vulnerable and reacted with performance
decline to sleep deprivation. These observations seem paradoxical
at first glance. Although speculative, the observations might be
explained by individual differences in the interplay of both a sleep-
loss–dependent increase in endogenous adenosine levels and a
sleep-loss–dependent up-regulation of adenosine receptors, which
both have been shown in animal experiments. If both groups ex-
perienced A1AR up-regulation in response to the prolonged time
awake, but in the vulnerable group this up-regulation was accom-
panied by a considerable increase in endogenous adenosine levels,
increased receptor activation could have mediated the large per-
formance impairing effects. In contrast, in the resilient group
the increase in adenosine levels may have been less pronounced,
thus mediating smaller performance impairments, but leaving
more A1AR available for binding with the PET receptor li-
gand [18F]CPFPX. This interpretation is supported by several
observations from animal experiments. First, adenosine concentra-
tions were found to be increased in specific brain sites with prolonged
wake-time (13). In vitro, we found evidence, that adenosine competes
with CPFPX binding at the A1AR (38). However, so far it has not
been shown in humans that adenosine levels increase with prolonged
wake-time. In contrast, in medicated epilepsy patients with phar-
macologically refractory seizures, no significant increase was de-
tected with microdialysis in preparation for surgical resections in the

amygdala (n = 7), hippocampus (n = 1), or motor cortex (n = 1)
(39). Second, after an initial internalization of receptors, long-
term agonist stimulation led to an increase in receptor mRNA
and higher receptor availability (40). These findings imply that
different from other downscaled G protein-coupled receptors
(41), A1AR are up-regulated during prolonged wakefulness. This
effect seems to enable sustained responsiveness of the system and
to amplify the sleep-inducing function of adenosine.
In the current dataset, we further tried to link the differences in

adenosine receptor availability to genetic polymorphisms that
have been reported to explain resiliency to sleep deprivation and
caffeine effects on sleep and performance [ADORA2A SNP
rs5751876, ADORA2A haplotype 4 (42)] and anxiety (43) or sleep
[adenosine deaminase SNP rs73598374 (44)]. ADORA2A SNPs
might be relevant, as we previously found an association between
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A1AR availability under baseline conditions and ADORA2A SNP
(rs5751876 and rs2236624) in another population (43). However,
presumably because of the rather small sample size, we could not
detect a significant association here. There was also no relation-
ship between adenosine receptor availability and subjective caf-
feine sensitivity based on a previously evaluated questionnaire
(35). Furthermore, no association was found between the caffeine
sensitivity subtype and cognitive performance or sleep parameters.
Interestingly, subjective sleepiness (SD52 − REC14) differed be-
tween the two subgroups, indicating that caffeine-sensitive subjects
felt sleepier (Mann–Whitney u test: P = 0.008, KSS median dif-
ference 6) than insensitive ones (KSS median difference 7).
At the time of the PET scans, the subjects were off caffeine for

at least 5 d, but duration of withdrawal might be up to 9 d (45).
Saliva samples at the beginning of the study proved caffeine
abstinence. None of the subjects reported withdrawal-related
symptoms, like headache, during the study period.
The negative correlation between the sleep-loss–dependent de-

creases in A1AR availability and increase in N3 in the first sleep
cycle of recovery sleep seemingly contradicts animal findings on the
involvement of the adenosinergic system in the homeostatic regu-
lation of sleep (24–26, 46). This negative correlation—similar to the
correlations for the cognitive performance impairments and
sleepiness—is most likely because of a wake-dependent increase of
adenosine release/concentration, outweighing the homeostatic up-
regulation of A1AR, and thus leaving fewer sites available for
binding with the PET receptor ligand. In our human dataset the
recovery night did not only restore A1AR availability to control
levels, it also recovered cognitive performance and sleepiness rat-
ings. Our findings are consistent with the concept of activity-
dependent local sleep of groups or single neurons (47, 48) that
integrates the synaptic homeostasis theory and metabolic theories,
based on the occurrence of local neuromodulators, like ATP
and adenosine.
It is a robust finding that sleep deprivation improves depressive

symptoms in a large proportion of human patients (49). Shortly
after the first description of the two-process model of sleep–wake
regulation, it was hypothesized that in depressed patients the ho-
meostatic regulation might be deficient as reflected in a lower
build-up of sleep pressure during wakefulness (15). A key candi-
date mediating both the homeostatic process and the antidepres-
sant effect is adenosine. Interestingly, S-adenosylmethionine, a
precursor of adenosine, is a widely used over-the-counter medi-
cation of major depression (50). More directly, it was recently
shown in a readout model of antidepressive effects (forced swim
test in mice) that astrocytic adenosine signaling to A1AR during
sleep deprivation is necessary to reduce depressive-like behaviors
(21). Up-regulating A1AR in a transgenic mouse model of condi-
tionally enhanced forebrain A1AR expression promoted resilience
against depression-resembling reactions in various behavioral
tests (51). Conversely, A1AR knockout mice had an increased
depressive-like behavior and lacked the antidepressant effects of
sleep deprivation. The rapid relapse following the end of thera-
peutic total sleep deprivation is in line with our findings of a nor-
malization of A1AR availability following a single episode of
recovery sleep. It is tempting to speculate that potential interven-
tions that induce a chronic up-regulation of A1AR may have a
longer-lasting therapeutic effect. In fact, continued sleep restriction
following total sleep deprivation was reported to extend the anti-
depressant effect in some patients (52). Our findings therefore
have potential clinical implications. The subtle differences in the
settings of the adenosine receptor system that we found to be as-
sociated with different behavioral responses (vulnerable or resilient
against sleep loss) might also serve as indicators for the outcome of
therapeutic sleep deprivation in patients with major depression.
Even more, there might be a specific “depression-type” of cerebral
receptor/enzyme settings, which accounts for differential therapy
efficacy, but also represents a primary neurochemical basis for

depression-associated patterns of sleep disturbances and disease-
associated behavioral phenotypes. In line with this assumption, the
beneficial therapeutic effects of sleep deprivation in major de-
pression could arise from an adjustment of the pathological
receptor/enzyme setting.
In conclusion, we found that sleep deprivation resulted in a

higher A1AR availability in the human brain. The increase that
was observed over 52 h of wakefulness was restored to control
levels during a 14-h sleep episode. Individuals with a large increase
in A1AR availability were more resilient to sleep-loss effects than
those with a subtle increase. This pattern implies that differences
in the endogenous adenosine and A1AR availability might be
causal for individual responses to sleep loss. We therefore propose
that endogenous adenosine and its receptors are key players in the
individual regulation of sleep–wake behavior and cognitive per-
formance. Understanding the mechanistic link between mood and
adenosine regulation under sleep restriction, especially in the light
of individual characteristics, might improve the rationale for the
individual indication and design of therapeutic sleep modulation
in depression.

Methods
Participants. The study was approved by the Ethics Committee of the Medical
Faculty of the University of Duesseldorf and the German Federal Office for
Radiation Protection. Fifteen healthy, male volunteers gave written informed
consent of which 14 (mean age 27.7 ± 5.4 y) were included in the analyses. For
details on participant selection, see SI Methods.

Study Design.Oneweekbefore thearrival in the laboratory, subjectsmaintained
a sleep log and routine (bed time 11:00 PM to 7:00 AM). Four days before the
arrival, subjects abstained from caffeine, which was checked with saliva samples
upon arrival and by plasma samples at the time of PET scans. The last 3 d before
the laboratory stay, subjects wore an actigraph to check compliance. After an
adaptation night (11:00 PM–7:00 AM), polysomnographic measurements were
recorded during one baseline night (11:00 PM–7:00 AM). From Monday
morning until Wednesday afternoon (5:00 PM), two participants at a time were
sleep-deprived. The two participants completed the neuropsychological test
batteries 1-h apart of each other. Starting at 9:00 PM on Monday, participants
completed the test battery and a 3-min recording of waking EEG at 6-h inter-
vals. Out of testing sessions, subjects were allowed to do nonvigorous activities.
Subjects were continuously monitored by at least one study staff member
to ensure wakefulness and adherence to the protocol. After SD52 and
REC14 (5:00 PM–7:00 AM), participants were scanned with the two scans
scheduled 24-h apart. The first subject was scanned at 10:00 AM and the second
one at 12:00 AM (mean scanning clock times: 11:42 AM ± 1:16 h). The control
group underwent the same scanning protocol but was allowed to sleep for 8 h
during the night before the scan (baseline) but without neuropsychological
testing. The study design is further presented in Fig. 1 and SI Methods.

Polysomnography and Neurobehavioral Testing. For polysomnography and
neurobehavioral testing, see SI Methods.

PET. [18F]CPFPX PET were performed as previously reported (27, 29); see
SI Methods and Fig. S1.

Statistical Analyses. The sleep-loss response in the PET [regional A1AR distri-
bution volumes (VT; mL/mL) was quantified in reference to: (i) control and
(ii) recovery condition with a one-way mixed ANOVA with subject as random
factor (P < 0.05). Post hoc t tests were used for pairwise comparisons with a
false-discovery rate (FDR)-corrected significance level. Spearman rank correla-
tion and regression analyses were used to evaluate associations between
adenosine receptor availability and: (i) performance measurements, (ii) self-
ratings of sleepiness, and (iii) sleep parameters. The effect of recovery sleep on
performance measures and sleepiness ratings was evaluated with two-tailed
paired t tests. Average values are reported as mean ± SD. For all analyses,
significance was assumed at P < 0.05 if not stated differently.
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